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Low-Voltage, High-Speed AlSb/InAs HEMTs

• Objective:

– Develop advanced InAs HEMT technology which will lead to lower noise
figure, higher gain, and lower power consumption in microwave/mm-
wave receivers and high-speed logic circuits.

• Technical Approach:

– Resolve fundamental material and design issues which are unique to
the AlSb/InAs material system.

– Develop design and fabrication methods to fully realize the performance
potential of the system.
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• Low-noise receivers

– space-based sensing and communications
– portable communications
– micro-air-vehicles (MAVs)

• High-speed logic circuits

– communications, data transmission
– potential for lowest power-delay product
– integration with Sb-based RTDs for enhanced functionality

and low-voltage operation

Potential Applications

High-speed, low-power consumption electronics needed for light-
weight power supplies, extension of battery lifetimes, and high data
rate transmission.



AlSb/InAs HEMT Motivation

• Attractive Material Properties

–  High electron mobility

–  High electron velocity
–  Large conduction-band offset

–  High 2-DEG sheet-charge density

    Potential for High Speed and Low Noise at Low Drain Voltage

• Design Issues

–  Impact ionization/High output conductance

–  High gate leakage current



AlSb/InAs HEMT Fabrication

• Pd/Pt/Au ohmic contacts

– Heat-treated at 175°C for 3 hours
– Pt diffusion barrier

• InAlAs/AlSb composite barrier

– Enables gate recess etch

– Reduces gate leakage current
– Reduces kink effect

• TiW/Au (175 Å/1000Å) gate

– E-beam lithography
– Citric acid-based surface treatment

• Mesa isolation

– Hydrofluoric acid-based etch
– Gate air-bridge at mesa edge

LG = 0.2 µm, LDS = 1.0 µm



Reduced Impact Ionization in HEMTs with an
InAs Subchannel

42 Å InAs subchannel reduces impact ionization by transfer of hot electrons to
subchannel which has a larger effective bandgap due to quantization.
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0.1 µm InAs HEMTs with InAs Subchannel

gm(rf) =  850 mS/mm
fT = 180 GHz, fmax = 80 GHz
fT = 250 GHz (after removal of bond pad capacitance)

Microwave Performance at V DS = 0.6 V

Ref:  Electron. Lett. , vol. 34, no. 15, July 1998
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60 nm InAs HEMT Characteristics

gm(rf) =  1 S/mm
fT = 160 GHz
fmax = 80 GHz

fT = 90 GHz at 100 mV is highest reported for a FET at this drain bias.

Microwave Performance at V DS = 0.35 V
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Ref:  J. Vac. Sci. Technol. B , 17 (3), May 1999



AlSb/InAs/GaSb Material System
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HEMTs with Digital Alloy InAs 1-xSbx Channel

1 ML InSb

1 ML InSb

4 ML InAs

4 ML InAs

InAs0.80Sb0.20}
SI GaAs substrate

InAs  4 ML  

In0.4Al0.6As  40 Å
InAs  20 Å

AlSb   2.1 µm

AlSb  125 Å

InAs(Si)  12 Å

InSb  1 ML  
10x

AlSb  12 Å

Ref:  Electron. Lett. , vol. 35, no. 10, May 1999

• InAs0.8Sb0.2, which is lattice matched to AlSb, was grown as a digital alloy
superlattice with 4 ML InAs / 1 ML InSb.

• AlSb/InAsSb has type-I band lineup.

– more hole confinement
– lower output conductance



Type-I Band Offset between AlSb and InAsSb

Photoluminescence measurements show the transition from type-II to type-I
band alignment occurs around 15% of Sb.

AlSb AlSb

 150 Å
InAsSb

210 meV

62 meV 

Ref:  J. Appl. Phys. , vol. 87, no. 11, June 2000
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0.1 µm InAsSb HEMT Characteristics
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Microwave Performance at V DS = 0.6 V

–  fT  = 130 GHz @ VDS = 0.6 V

–  fT, int. = 180 GHz @ VDS = 0.6 V

–  gm = 700 mS/mm, gd  = 110 mS/mm

–  Voltage gain of 6 is highest reported for this material
 system with this gate length.



TiW/Au Gate Metalization

• TiW/Au gate metalization for increased thermal stability

–   TiW contacts on GaAs previously shown to be stable to 650°C

–   E-beam evaporated from alloy source (90% W, 10% Ti)

–   XPS indicates deposited layer is 65% W and 35% Ti

XPS of TiW Layer



Oxygen Plasma Surface Pretreatment

• Adjusted oxygen plasma surface pretreatment to reduce damage

–   Previous treatment:  barrel etcher, 50 W for 60 s

–   New treatment:  parallel-plate etcher, 5 W for 30 s

–   Diodes with new treatment exhibit 2x lower gate leakage

Bond pad before isolation (3200 µm2) HEMT gate diode after isolation



0.2 µm InAs HEMTs with TiW/Au Gate Metal

gm = 750 mS/mm
fT = 90 GHz, fmax = 80 GHz

fT = 120 GHz (after removal of bond pad capacitance)

HEMT Performance at V DS = 0.6 V

Ref:  IPRM  Proceedings,  May 2001



TiW/Au Gate Leakage Current

Cr/Au gate HEMTTiW/Au gate HEMT

• TiW/Au gate HEMTs exhibit 10x lower gate leakage current
compared to previous Cr/Au gate HEMTs.

• Decrease is believed to be due to reduction in defect-assisted
tunneling through the barrier.

• Gate leakage current further reduced by 10x at 77K.



Thermal Stability of TiW/Au HEMT

• Heat treatment:

–  Hot plate located in H2:N2 ambient

–  90°C-210°C in 30°C increments

–  1 hour duration for each heat treatment

• Only small change observed in reverse current or S-parameters
until 210°C treatment.

• Cr/Au gate HEMTs on similar material showed 5-10x increase in
reverse leakage current at 150°C.



AlSb/InAs HEMT
Low-Frequency Noise Measurements

Ref:  IPRM  Proceedings,  May 2000

• First low-frequency noise measurements of Sb-based HEMTs.

• Hooge parameters (α H ) for three types of devices are reasonable for a relatively
immature technology.

Noise Summary
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Low Temperature 1/f Noise Measurements

Prominent noise bump moves down with temperature for InGaSb channel HEMT.
Activation energy estimated to be 0.17 eV.

VDS = 50 mV
210 K

240 K

270 K

Ea = 0.17 eV

InAsSb channel HEMT



• Need

– Future multifunction radar, EW, and communication systems will
require ultra-high-speed and ultra-low-power digital circuits
which have reduced chip size and increased density.

• Potential Solution

– RTDs combined with HEMTs result in high functionality, small
size, low power consumption, and fast operating speed.

– Antimonide-based RITD/HEMT logic circuits have potential to
set new standards for speed and power consumption.

Antimonide-Based Resonant Interband
Tunneling Diode(RITD)/HEMT Logic Circuits



• RTDs combined with HEMTs result in high
functionality, small size, low power
consumption, and fast operating speed.

• Type II AlSb/InAs/GaSb RITDs are ideal for
high-speed, low-power applications.

– High peak current and low valley current at
low drain voltage.

• AlSb/InAs HEMTs perform well at low drain
voltage and have potential for lowest power-
delay product for any semiconductor.

– High fT, fmax at low drain voltage
– Large current drive

Advantages of Antimonide-Based
 RITD/HEMT Logic Circuits

Type I RTD (InP-based)

Type II RITD (Sb-based)

AlAs

InGaAs



Sb-Based RITD/HEMT Logic Circuits
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Peak current density: 1.4x104 A/cm2

Peak voltage:  0.12 V

Peak-to-valley ratio: 11

Ref:  J. Vac. Sci. Technol. B , 18 (3), May/June 2000



Sb-Based RITD/HEMT Simulation
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Experimental data from R. Magno (NRL)

Large-signal model: dc model combined with bias-dependent small-signal equivalent circuit.

Phenomenological dc model:

Id = Io + IdM + TIdM
1 + εIdM

 ≅ Io
1 - MT

 ≡ Io 1 + η

M << 1,  εIdM << 1

multiplication trapping

Ref:  IPRM  Proceedings,  May 2000



Sb-based MOBILE Circuit

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300 350 400

V
o

lta
ge

 (
V

)

Time (ps)

Clock

Output
Latch high

Latch low

10GHz

SPICE
simulations

 D-flip-flop

Static
Power

0

0.5

1

1.5

2

10 15 20 25 30 35 40

P
ow

er
 D

is
sp

at
io

n 
(m

W
)

RITD Area (um)

Latch HIGH

Latch LOW

Input high

MOBILE core only

No RITD limiter

w/ RITD limiter
• SPICE simulation of HEMT/RITD

circuit predicts 5-10X lower power
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Gate Leakage Current Reduction using
“Smart-Cut” Layer Transfer Technology

• Objective:

– Fabricate and characterize Sb-based circuits on hybrid substrates
to lower dislocation density.

• Plans:

– Develop hydrogen ion-implant layer splitting process to transfer
ultra-thin GaSb or InAs layers to an insulating substrate.

– Grow high-quality HEMT layers which are lattice-matched to the
ultra-thin transferred material.



“Smart-Cut” Wafer Splitting Technology

After Implantation with
Hydrogen, >5x1016cm-2

Demonstrated to date for single-crystal Si, GaAs, SiC, Ge, GaN

semiconductor substrate

microcavities

Hydrogen gas expands when heated and splits semiconductor

semiconductor substrate

After Anneal



“Smart-Cut” and Wafer Bonding of GaSb

SEM image of GaSb transferred
to insulating substrate.

First demonstration of wafer bonding and hydrogen ion-implant layer splitting to
form ultra-thin GaSb on an insulating substrate.

Ref:  Electron. Lett. , vol. 35, no. 8, April 1999

InAs etch
stop layer

ultra-thin
GaSb layer

GaAs substrate

GaSb substrate

hydrogen ion-implanted layer

“Ultra-Cut” Process



• Demonstrated 0.1 µm InAsSb-channel HEMTs.
– AlSb/InAsSb has type-I band lineup which enables more hole confinement.
– Voltage gain of 6 is highest reported for this material system with this gate length.

• Demonstrated 0.2 µm InAs HEMTs with TiW/Au gate metalization.
– 10x reduction in gate leakage current at low drain voltage using TiW/Au gate and

adjusted oxygen plasma surface pretreatment.
– HEMTs were thermally stable to 180°C when heat treated in a H2/N2 ambient.

• Performed low-frequency noise measurements of Sb-based HEMTs.
– Hooge parameters (αH ) of 10-2  to 10-3  for three types of devices are reasonable for

a relatively immature technology.

• Demonstrated Sb-based RITD/HEMT integration.

– HEMT and RTD performance is comparable to that obtained on discrete devices.
– Initial PSPICE simulation of HEMT/RTD MOBILE circuit predicts record 5-10X lower

power dissipation than comparable InP-based circuit.

• Demonstrated wafer bonding and hydrogen ion-implant layer splitting
(“Smart Cut”) of GaSb.

– To be used for the growth of high-quality HEMT layers which are lattice-matched to
the ultra-thin transferred GaSb material.

Summary


